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STRUCTURAL STABILITY AND MECHANICAL BEHAVIOR
OF THERMOMECHANICALLY PROCESSED DISPERSTION
STRENGTHENED NICKEL ALLOYS

by

B. A, Wilcox, A, H, Clauver, and W. B, Hutchinson

ABSTRACT

Thermomechanical processing of dispersion-strengthened and dispersion-
free Ni-base alloys influences the microstructure, crystallographic texture, and -
strength., The alloys studied were: (1) Ni, (2) Ni-2ThO,, (3) Ni-20Cr,
(4) Ni-ZOCr-ZThOZ, (5) Ni-20Cr-10W, and (6) Ni-ZOCr-10W-2Th02. Refining the
substructure is a much more potent means of strengthening at room temperature
than is dispersion hardening. The major microstructural feature which affects
high temperature strength is the grain aspect ratio, i,e,, grain length divided by
grain width., The yield strength and creep strength at 1093°C increased linearly
with increasing grain aspect ratio. The role of deformation texture in recrystallizg-
tion resistance and in development of microstructures during recrystallization is

discussed,.

ix



STRUCTURAL STABILITY AND MECHANICAL BEHAVIOR
OF THERMOMECHANICALLY PROCESSED DISPERSION
STRENGTHENED NICKEL ALLOYS

by

B. A, Wilcox, A, H., Clauer, and W, B, Hutchinson

SUMMARY

Thermomechanical processing (TMP) by drawing and swaging have been used
to work three dispersion strengthened Ni alloys and their dispersion~free counter-
parts: Ni-ZThOZ, Ni, Ni-20Cr-2ThO,, Ni-20Cr, Ni-ZOCr-lOW-ZThOZ, and Ni-20Cr-10W,
The purpose was to examine the important features of indirect strengthening(l’z)
due to dispersed particles, and this was done by evaluating how TMP influenced
microstructure, tensile deformation behavior at 25 and 10930C, creep behavior at
109300, and crystallographic texture,

Room temperature strength was increased by TMP as a result of refining
the grain size and substructure spacing (cell size), £, in accord with the usual Hall-
Petch relation. This substructure strengthening increment was five to six times
greater than the strength increment »Op, due to particles alone, For a given alloy
base, the Hall-Petch plots of thoriated and ThOZ—free materials converged at high

values of ﬁ'llz.

Thus, particle strengthening and substructure strengthening
are not additive, since the value of Up depends on the value of 4. Similarly,
the increment in strength due to solid solution additions of Cr is not directly
additive to grain size strengthening, since this also depends omn 4.

At high temperatures (1093OC) no good correlation was found between

yield strength and grain or cell size. Instead, there was an excellent correla~

tion between yield strength and grain aspect ratio (grain length, L, divided by
grain width, 4), whereby the yield strength increased linearly with L/4. This
correlation held for non-recrystallized Ni-ZThO2 with very fine elohgated grains,

as well as recrystallized Ni-2ThO, which had very coarse elongated grains. The



same aspect ratio correlation was found for minimum creep rate and 100-hour
rupture life. This influence of grain aspect ratio was interpreted in terms of
how L/4 influenced grain boundary sliding, which appears to be the major mode of
tensile yielding and creep at 1093°C. When the stress axis is parallel to the
elongated grain direction, increasing L/4 lowers the resolved shear stress on
boundaries, on average, and this minimizes the overall amount of sliding.

Thus, a fine, stable, very elongated grain structure is optimum for com-
bined room temperature and high temperature strengthening, and this can be achievea
in Ni-ZThO2 bar, but apparently not in Cr-containing alloys., Here recrystallization
occurs at high temperatures, sometimes giviﬁg fine, nearly equiaxed, grains and
sometimes coarse elongated grains,

The role of deformation texture in preventing recrystallization, or in
iﬁfluencing the resultant microstructure when recrystallization does occur, is
not completely clear. Extruded Ni-ZThO2 had a dual <100>-<111> fiber texture with
a very strong <l00> component, and was resistant to recrystallization. When pro-
cessed such that the <L00> component dropped to ~ 50% of the texture concentration,
partial recrystallization occurred at 1200%. Also thekCr-containing alloys had
a less sharp <100> fiber texture than Ni—ZThOZ, and they were susceptible to
recrystallization., Thus a strong <100> fiber texture may promote recrystallization
resistance, When recrystallization does occur, often the structure consists of
coarse elongated grains, and this is sufficient for good high temperature strength,
provided the grain aspect ratio is large enough. The anisotropic grain growth

which leads to this kind of structure may be related to the deformation texture,



INTRODUCTION

It has been shown by numerous workers that controlled thermomechanical
processing (TMP) of dispersion strengthened metals, such as SAP, TD Nickel, DS
Nickel, and TD Ni-Cr, can produce improved strength, although different processsing
methods are generally required to enhance strength at room temperature as opposed
to strength at high temperatures,

It has been the feeling of many that strengthening occurs by particles
blocking dislocation motion, and that additional strengthening can be achieved if
the particles act during TMP to help develop and pin certain stable dislocation
substructures and grain sizes and shapes. The question of whether or not particles
promote certain crystallographic textures, with attendant strengthening, has also
been raised. Ansell(l) has used the phrase "direct and indirect dispersion
strengthening'" to describe these effects of particles, and this concept was
demonstrated in the case of Ni-ZThO2 by Wilcox and Jaffee(z), who compared the
tensile deformation of TD Nickel bar with that of recrystallized TD Nickel and
pure polycrystalline Ni over the temperature range 25-1200°C. It was found that
the recrystallized TD Nickel, which had coarse elongated grains and very little
dislocation substructure, was stronger than pure Ni and weaker than TD Nickel bar,
over the entire temperature range. The strength increment of recrystallized TD
Nickel over pure Ni was attributed to direct strengthening via the Orowan mechanism,
The even superior strength of TD Nickel bar, which had a fine stable elongated
grain and subgrain structure, was hypothesized to be associated with the fine
grain size, a higher dislocation density, and possibly a texture effect,

The uncertainty in the indirect strengthening contribution of ThO2
particles was the basis for the research performed under the present program, The

objectives of this program were to gain an understanding of how various TMP



procedures could alter the microstructure of dispersion strengthened Ni alloys,
and how the microstructural changes could influence room temperature and elevated
temperature mechanical properties., Another feature of this program dealt with

the effect of TMP on texture, Many people have speculated that development of
certain textures in dispersion strengthened Ni alloys is "beneficial", although to
the authors' knowledge this has not been quantitatively demonstrated, nor has the
term "beneficial" been satisfactorily explained. One might ask, for example,
whether 'texture strengthening" is important, or whether the texture developed
during TMP affects recrystallization resistance, or in the event that recrystalli-
zation does occur whether the subsequent microstructure is determined to some
extent by the deformation texture.

In order to examine these aspects of indirect strengthening, six alloys
were studied: Ni, Ni-20Cr, Ni-20Cr-10W, with and without 2-volume percent Th02.
TMP was accomplished by wire drawing and swaging, and the following properties
were examined as a function of TMP: microstructure, room and elevated tempera-
ture tensile deformation behavior, high temperature creep characteristics, and

features of the dual <100>-<111> fiber texture,

MATERTALS AND PROCEDURES

Materials

The six alloys studied in this investigation were obtained from Fansteel
Metallurgical Corporation in the form of 0,35 to 0.40 inch (0.89-1.02 cm) diameter
extruded bar. The chemical compositions are given in Table 1, and the fabrication
procedures used by Fansteel were as follows:

(1) Hydrostatically compact powders to billets at 60,000 psi (414 MN/mZ)



TABLE

1.

COMPOSITION OF EXPERIMENTAL ALLOYS (Weight=percent)

M

Alloy ThO2 Cr W C, S N
Ni - - -- 0.0010 0.0062 -
Ni-ZThO2 2.9 -— -- 0.0024 0.0022 0.010
Ni-20Cr - 19.7 - 0.0278 0.0019 -
Ni—-ZOCr--ZThO2 2,0 20,2 - 0.0249 0.020 0.0051
Ni=20Cr=-10W - 20.4 8.6 0.0310 0.0063 L)
Ni-ZOCr-lOW-ZThO2 2.8 20.8 9.9 0.0271 0.0035 -




(2) Can in mild steel, 2 inch (5.08 cm) outside diameter
(3) Sinter under flowing hydrogen to 1177% maximum temperature
(4) Cool, evacuate and seal can

(5) Extrude from 2 inch (5.08 cm) diameter to 1/2 inch (1.27 cm)
diameter at 10939C

(6) Decan

(7) Centerless grind to cleanup.
The Ni, Ni-ZThOZ, Ni-ZOCr, and NifZOCr-ZThO2 alloys were shipped from Fanstgel
in the as-extruded condition, However, the two tungsten containing alloys were
annealed by Fansteel (1 hour, 1316°C, air) prior to cleanup and shipping. The
as-extruded microstructures varied from recrystallized for the pure Ni to fine
elongated grains in the Ni-ZThO2 alloy. Details of the various microstructures

are discussed later,

Particle sizes and spacings were determined in the ThOZ-containing
alloys using techniques described previously(z’S). A Zeiss Particle Size Analyzer
was used to measure 2000 particle diameters from transmission electron micro-
graphs, and the particle size distributions are shown in Figure 1, and Table 2,

In Figure 1 the distribution is expressed as volume percent of the total ThO2
content, Using the data in Figure 1 the mean planar center-to-center particle

(4)

spacing, d, was determined by developing the expression
a2 = N, (1)

where Ns = number of particles intersecting a unit area, Transforming this ex-

pression into the appropriate particle parameters, and including the particle

(2)

size distribution leads to the following relation' ’, from which d values were

calculated:
2 _ 2m7
3Z (f./r2 )
. i v,
i i

. ()



% of Total ThO, Conitent by Volume

Particle Diameter, um
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FIGURE 1, Particle size distributions of experimental
ThO,-containing alloys, expressed as volume
percent of the total ThO2 content,
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Here fi is the volume fraction of particles in a limited size range having an
avérage particle radius, r, - Table 2 shows that the three ThOZ—containing
i

alloys had an average particle size of ~0.02 ym and a mean planar center~-to-center

particle spacing of ~ 0.16 ym,

Procedures

Thermomechanical Processing

Two types of working, drawing and swaging, were used to process the
alloys. Two working procedures were employed, one with no intermediate anneals
(hereafter referred to as Procedure A) and the other with intermediate anneals
for 1 hour at 1200°C in a hydrogen atmosphere (hereafter referred to as
Procedure B). Only wire drawing was used to process the Ni and Ni-ZThO2 materials,
but swaging was used for some of the Cr-containing alloys which proved to be very

difficult to work by drawing., Summarized below are the TMP conditions employed

for each of the alloys,

Ni and Ni-ZThO2

Drawing by Procedure A (no intermediate anneals)

Drawing by Procedure B (intermediate anneals after each 50%

reduction)

Ni-20Cr and Ni-ZOCr-ZThO2

Drawing and swaging by Procedure A (no intermediate anneals)
Drawing and swaging by Procedure B (intermediate anmeals after
each 25% reduction)

Ni-20Cr-10W and Ni—ZOCr-lOW-ZTh02

Swaging by Procedure B only (intermediate amneals after each 257%

reduction),
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Both drawing and swaging were done on materials preheated to 200°%. It
was found that teflon proved to be the most satisfactory lubricant for wire drawing.
Only a limited amount of the Ni-ZOCr-lOW-ZTh02 was obtained, so TMP of this alloy
(and the Ni-20Cr-10W alloy as well) was confined to swaging by Procedure B, The
starting point for Procedure B was extruded plus annealed material., For the alloys
drawn or swaged by Procedure B, all examinations (microstructure, tensile and

creep tests, and texture) were made after annealing,

Metallography

An integral part of this investigation concerned correlating mechanical
properties with microstructure., The major metallographic procedures consisted of
optical and transmission electron microscopy (TEM), with selected replica electron
microscopy studies. The metallographic and thinning procedures for TEM used in

this study were standard, and have been described previously(z’S’S).

Tensile and Creep Testing

All tensile testing was done in an Instron at a strain rate of 0.01
minﬂl. Two test temperatures, 25 and 1093°C, were used and the high temperature
tests were done in a wvacuum Brew furnace attached to the Instron. The specimens
had threaded ends, and those machined from rod of 30,25 inch (0.635 cm) diameter
had a 1 ihch (2.54 cm) gage length., Specimens machined from smaller diameter rods
(to 0.096 inch [0,244 cm] diameter) had a 1/2 inch (1.27 cm) gage length., Axial align-
ment of all tests was assured by universal joints,
Tension creep tests were made on only the three ThOz-containing alloys, and
at only one temperature, 1093°C. The creep specimens had the same configuration as

tensile specimens, and they were tested in a vacuum of 10'5 torr (1.33x10-3N/m2) under
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constant stress conditions, Additional details of the creep testing procedures

have been reported previously(3’6’7).

Texture Measurements

All texture measurements were made at the University of Birmingham, and
consisted of measuring complete <200> and <111> pole distributions. From these,
the concentrations of the <100> and <111> fiber texture components were determined,

Rods of the thermomechanically processed alloys were mounted in epoxy —
resin in square section troughs with the specimen axes accurately aligned along
the troughs., The composites were transferred to a jig which had slots machined
in it at 45° to the long axis of the composite. Slices were then cut through the
composite using a jeweller's saw guided within the slots. The slices were ground
on one side, polished metallographically and etched in aqua regia to remove all
traces of deformation. The final specimens thus had the normal to the prepared
surface at 45° to the axis of the bar.

To determine texture in an axi-symmetric material, one requires to
know the variation of pole intensity for given crystallographic planes from the
axial direction to the radial direction. The specimens prepared as above were
mounted on a Siemens texture goniometer so that the specimen could be tilted
about an axis which was the radial direction (of the bar) lying in the plane of
the section. By tilting the specimen * 45° about the symmetrical position, the
diffracting plane normal was thus varied from the axial to the radial direction.
The width of the divergence slits was made great enough so that at any angle of
inclination from 0° to 450, the same total intemsity of radiation was incident
upon the specimen. The O and 2 O angles of the goniometer were set as required
for the {111} or {200} reflections using filtered copper K& radiation. It was

observed that as a result of the extreme sharpness of the diffraction peaks on
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the axis, deviations of only one or two degrees of alignment of the specimen
could lead to large errors in the measured peak height. For this reason, all
specimens were finally aligned to give maximum intensity on a sharp axial diffrac-
tion peak., The necessary adjustment was never more than three degrees, and
typically under one degree. Counts of diffracted intensity were made at 5°
intervals of the angle of inclination for periods of 10 seconds while oscillating
the specimen in the beam. The background level was measured accurately and
subtracted from all measurements,

It may be simply shown that a measured diffracted intemsity, I, at an
angle, 4, to the axial direction represents a volume of material proportiomal to
I Sin 4. Thus by summing the value of I Sin ¢ from ¢ = 0° to 6 = 90° and dividing
all measurements by this sum, the values are normalized to multiples (and sub-
multiples) of a true random value, This procedure was adopted in the present
work, It should perhaps be stressed that the methods described above make no
assumption of the existence of fiber textures, It is only assumed that, averaged
over the whole specimen, the texture has axial symmetry,

Since the peak intensity values along the axis are very susceptible
to error and since, because of the nature of the I Sin 4 expression, they
represent a vanishingly small volume of the material, other quantitative measures
of the texture have also been derived. By summing the normalized values of I Sin ¢
between ¢ = 0° and 10° or 200, and multiplying by p/2 (where p is the multiplicity
of the crystal planes diffracting), one obtains the fraction, or percentage, of
material for which the axis lies within 10° or 20° of the crystallographic direction,
For example, the value of <111>, 20° indicates the percentage of material for

*
which the axis lies within 20° of <111>,

*
For a random sample, <200>, 10° = 4,5%; <200>, 20° = 18%; <111>, 10° = 6%;

11>, 20° = 247,
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In order to study the texture at different depths within the wires,
back reflection diffraction patterns were recorded photographically on selected
specimens. These were done at the surface and center line positions, or at three
intermediate positions. Several specimens were also chemically thinned to 0,01
inch (0,025 cm) diameter, and forward reflection photographs taken to check

qualitatively the texture components present at the very center of the wires,

RESULTS AND DISCUSSION

In the discussion of results which follows, it is more convenient to
review the Ni and Ni-ZThO2 results first, followed by a discussion of the four
Cr-containing alloys. A General Discussion Section at the end relates all of the
observations. In each of the following two sections the discussions center around
observations dealing with: microstructure, tensile deformation, creep and creep

rupture, and texture,

Ni and Ni-—ZThO2

Microstructure

The microstructures of as-extruded Ni and Ni-ZTh02 are shown in Figures
3
2 and 3 respectively.€ On cooling from the extrusion temperature of 109300, the
pure Ni obviously recrystallized (Figure 2a). However, transmission electron

microscopy showed that a considerable amount of dislocation substructure still

All of the micrographs in this report are from longitudinal sections. When
microstructures appear elongated, the rod axis is parallel to the direction
of elongation,
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(b) 30, 000X

FIGURE 2., Microstructure of as-extruded Ni; (a)
optical micrograph, (b) transmission
electron micrograph,



FIGURE 3.

() 30, 000X

Microstructure of as-extruded Ni-2ThOg; (a)
optical micrograph, (b) replica electron
micrograph, (c) transmission electron
micrograph.
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femained (Figure 2b)., The as-extruded Ni-ZThO2 microstructure contained fine,
somevhat elongated grains (Figure 3), but the degree of grain elongation in this
Ni-2ThO, bar was considerably less than that in commercial 1/2-inch (1.27 cm)
diameter TD Nickel bar,

After annealing the extruded Ni and Ni-ZTh02 (the starting point for
drawing Procedure B) the resulting microstructures were those shown in Figures
4 and 5. The annealing coarsened the pure Ni grain size somewhat and reduced
the amount of dislocation substructure (Figure 4b compared with Figure 2b). TEM
showed that many grains in the annealed Ni had no dislocation substructure what-
soever, The transmission micrograph in Figﬁre 5¢ shows that the anneal coarsened,
i,e,, recovered, the structure of the Ni-ZThO2 alloy somewhat, but the optical
and replica micrographs in Figure 5 reveal that recrystallization did not occur.

During drawing of the Ni and Ni—ZTh02 by Proecedure A, the grains became
increasingly elongated with increasing drawing strain and the spacing between
the elongated tangled dislocation cell walls decreased. When the pure Ni was
dravn by Procedure B, recrystallization occurred after each amneal, and the re-
sulting grain size varied somewhat with the total drawing strain. After annealing
Ni—ZTh02 specimens drawn by Procedure B, it was found that the cell width remained
relatively constant with increasing total drawing strain, which indicates that
the worked structure recovered during annealing. The Ni-ZThO2 drawn 92.5% by
Procedure B partially recrystallized (~ 30%) after the fimal anneal. The grain
sizes and cell diameters are listed in Table 3 as a function of drawing strain
for both Ni and Ni-ZThO2 drawn by Procedures A and B, and representative micro-
structures in Figures 6-10 illustrate the following features:

Figure 6: Optical micrographs showing increasing cold work as Ni

was drawn by Procedure A.
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Figure 7: Transmission micrographs showing decreasing cell width as
Ni was drawn by Procedure A,

Figure 8, Transmissionkmicrographs showing decreasing grain and cell
width as Ni-ZTh02 was drawn by Procedure A,

Figure 9. Optical micrograph showing recrystallized and non-

recrystallized regions of Ni-2ThO, drawn 92.5% by

2
Procedure B,
Figure 10, Transmission micrographs showing relative constancy of grain
and cell width in Ni-ZThO2 drawn by Procedure B.

It has been known for a number of years from optical microscopy observa-
tions, that deformation causes formation of voids at the interface between coarse
particles (~ 1 Mm dia,) and the matrix, In 1966, Palmer and Smith(s) showed by
transmission electron microscopy that the same was true for fine particles
(0.02-0.04 um dia.) of Si02 in Cu, and concurrently Ashby(9) offered a model to
account for this behavior. Since then, there have been similar experimental
observations of void formation in Ni-ZThOZ(lo’ll) and Ni-ZOCr-ZTh02(11_13). In
each of these cases the deformations have been fairly heavy, since this is required
before the voids are large enough to detect by electron microscopy. A similar
observation was made in this study on Ni-ZThO2 drawn by Procedure A, Figure 11
and Table 4 illustrate how the void length increases with increasing drawing
strain. The ratio of void length, X, to particle diameter, 2 s is plotted versus

percent reduction by drawing in Figure 12(a) and versus true drawing strain, €T’

in Figure 12(b). The true drawing strain was determined from the usual relation
€ = mn[1/(1-rRAY ] , (3

where BA = fractional reduction in area by drawing. It is seen in Figure 12 (b)
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(b) 30,000X

FIGURE &4, Microstructure of extruded-plus-annealed
Ni; (a)  optical micrograph, (b) trans-
mission electron micrograph.



(c) 30, 000X

FIGURE 5, Microstructure of extruded-plus-annealed
Ni-2ThOy; (a) optical micrograph, (b)
replica electron micrograph, (c) trans-
mission electron micrograph,
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(¢) Drawn 88.5%

FIGURE 6.
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(b) Drawn 76.7% 200X

(d) Drawn 93.4% 200X

Optical micrographs of Ni drawn by Procedure A (no intermediate

anneals).



FIGURE 7.
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(a) Drawn 53.47% 30,000X

(b) Drawn 93.4% 30,000X

Transmission electron micrographs of Ni drawn
Procedure A (no intermediate anneals).

by
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(a) Drawn 49.4% 30, 000X

(b) Drawn 92,57% 30,000X

FIGURE 8., Transmission electron micrographs of Ni-2ThO)
drawn by Procedure A (no intermediate anneals),



FIGURE 9.
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Not
Recrystallized
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Optical micrograph of Ni-2ThO,, drawn
92.5% by Procedure B. After the final
anneal, about 30% of the cross-section
had recrystallized,
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(a) Drawn 46.5% 30,000X

(b) Drawn 92,5% (taken in 30,000X
unrecrystallized region)

FIGURE 10. Transmission electron micrographs of Ni—ZThO2
drawn by Procedure B (intermediate anneals).
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(a) Drawn 46.5% 60, 000K

(b) Drawn 86.8% 60,000X

FIGURE 11. Transmission micrographs of Ni-ZThO2 drawn by
Procedure A, illustrating increasing growth of
voids at ThO, particles with increasing drawing

strain,



TABLE 4,
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AVERAGE RATIO OF VOID LENGTH, X, TO PARTICLE DIAMETER, 2rv,

IN Ni-ZThOZ DRAWN BY PROCEDURE A (No intermediate anneals)

Total % Reduction True "
by Drawing Drawing Strain X/ZrV
As-extruded 0 Voids not detectable by TEM
49.4 0.63 0.47
73,3 1.32 0.55
86.8 2,02 1.43
92.5 2,59 1.69

v

Voids were not detected at all of the particles,

The X/2rv values reported

are the average of about 50 measurements per condition on those particles
which had detectable voids associated with them.

20

05

o}

~
/1/11111111
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Wire axis
2r,

7~

As-extruded P

0 20 30 40 50 60 70 80 90 100
Total Reduction by Drawing Procedure A , %

FIGURE 12,

20
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(b)

Slope =06

{ 2
True Drawing Strain, € by Procedure A

Growth of voids at ThO2 particles during

drawing of Ni-2Th02 by Procedure A,
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that a least-squares straight line can be drawn through the points, which leads

to the simple empirical relation

X/Zrv = 0,6 € - (4)

In all cases of Ni-ZThO2 drawn by Procedure B, no voids at the particle-
matrix interface were ever detebted, e.g., see Figure 10, which indicates that
the high temperature anneals were sufficient to heal the voids. This observation
is consistent with the fact that particle/matrix voids are not observed in _
commercial TD Nickel, DS Nickel, or TD Nickel-Chromium. Even though these
materials are given repeated deformations dﬁring processing, the intermittent
and final anneals appear to be sufficient to heal any voids which may have formed,
at least to the point where they are not detectable by transmission electron
microscopy.

Since there has been no systematic study of the kinetics of void
healing in these dispersion strengthened alloys, it is not possible to say what
times or temperatures are required to eliminate the voids, or heal them to the
point where they are no longer detectable by TEM, Webster(ll’l3) has suggested
that such voids in TD Nickel and TD Nickel-Chromium retard recrystallization and
grain growth in these alloys. If the voids heal up rapidly during high tempera-
ture annealing, it is likely that they would have no effect whatsoever on re-

crystallization and grain growth,

Tensile Deformation

The tensile deformation results for Ni and Ni-ZThO2 are given in Tables
5-8, and strength and ductility are plotted as a function of reduction by drawing

in Figures 13-16, Figure 13 shows room temperature tensile results for pure Ni
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after having been drawn by Procedures A and B, After drawing by Procedure A (no
intermediate anneals) the yield and ultimate strengths increased with increasing
drawing strain, This is in accord with previous observations on drawn ferrous

(14-17) (18)

alloys and W(lg), where it has been shown that the strengthen-

, Mo-TZM
ing results from substructure refinement, The same explanation is relevant here,
e.g,, see Figure 7 and Table 3, When pure Ni was drawn by Procedure B, recrystal-
lization occurred after each anneal, and thus the room temperature strengths in
Figure 13 remained relatively constant, The slight variation in yield strength
resulted mainly from a variation in the recrystallized grain size,

Figure 14 shows that drawing influenced the room temperature strength
of Ni-2ThO, in a similar fashion. When drawn by Procedure A the strength in-
creased as the substructure was refined, The same general trend in room tempera-
ture strength as a function of drawing strain has been previously reported by

(20) and Worn and Marton(Zl) on an experimental Ni-2,5 weight

Tracey and Worn
percent ThO02 alloy. However, when drawn by Procedure B, the intermediate anneals
recovered the structure (see Figure 10 and Table 3) such that the spacing between
the elongated cells and grains remained relatively comstant. Thus, the room
temperature strength in Figure 14 was essentially constant. The slight decrease
in yield strength after 92,57 drawing reduction was due to the fact that this
specimen was about 30% recrystallized, as shown in Figure 9.

Tensile results on pure Ni at 1093°C are shown in Figure 15, There is
little difference in strength between material drawn by Procedures A and B, pre-
sumably because specimens drawn by Procedure A recrystallized during heat-up to
the test temperature and during tensile deformation. In Figure 16 it is seen that

the yield and ultimate strength of Ni-ZTh‘O2 at 1093°C increase with increasing

drawing strain after drawing by both Procedures A and B. The highest strengths
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were achieved for specimens drawn by Procedure A, The specimen drawn 92,5% by
Procedure A was examined metallographically after tensile testing at 1093°¢
and it had not recrystallized., A somewhat surprising observation in Figure 16
is that the strength of the Ni-ZThO2 drawn by Procedure B increased with increasing
drawing strain, whereas the room temperature strength was relatively constant
(Figure 14) and there was no large variation in cell width (Table 3). An explana-
tion of this behavior is given later.

The influence of grain size and cell diameter on the room temperature

proportional limit, Op 1,.° and 0.2% yield strength,

Y.S.° of Ni and Ni~2Th02 was

examined in terms of the Hall-Petch analysis;
0=00+k,(7, , (5)

where 4 = grain or cell size., The results are plotted in Figure 17 as ¢

versus £-1/2 and Figure 18 as 1/2. Equation (5) is obeyed in

P.L.

GY.S. versus 4

both cases, and the slopes, or k values, for the pure Ni plots are greater than

the corresponding values for Ni-ZThO2 in both Figures 17 and 18. 1Included in
these figures are additional results from the literature on pure Ni(2’22-24) and

Ni-ZThOZ(Z’ZZ).
The convergence of the Ni and Ni-2Th02 proportional limit plots in
Figure 17 is more pronounced than the corresponding 0.2% yield strength plots in

Figure 18, The extrapolated point of convergence in Figure 17 would correspond to

z-l/Z 1/2

= 2.8 pm , or £ = 0,128 pm, which is close to the mean planar edge-to-edge
paeticle spacing of the 0,134 pm in the Ni-ZThO2 alloy. This result suggests that when
the cell spacings of the Ni and Ni-ZThO2 alloys are of the order of the inter-

particle spacing of the Ni-ZThO2 alloy, the strengths of both materials, as

measured by the proportional limit, are the same, This result seems eminently
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réasonable, since here}the average spacing between barriers to dislocation motion,
whether they are partic}es or cell boundaries, is about the same for both materials.
The 0.2% yield strength versus 1'1/2 plots of Ni and Ni-ZThO2 in
Figure 18 converge at a smaller cell size, 4 ~ 0,07 um, than the corresponding
proportional limit plots in Figure 17. A possible explanation is that the particles
in Ni-ZThO2 enhance work hardening, even in the first 0.2% plastic strain and even
for material with very closely spaced cell boundaries, The increment in measured
stress associated with this enhanced work hardening has the effect of displacing
GY.S. with respect to UP.L. more for Ni-ZThO2 than for pure Ni, This then causes
1/2

the yield strength plots to converge at a larger 4 than the proportional

limit plots.

At infinite grain size, i.e., £—1/2 = 0, the increment in strength due
to ThO2 particles is greatest, and the values of A o L and A GY S in Figures 17

and 18 are 18,500 psi (128 MN/mz) and 21,000 psi (145 MN/mz), respectively, These
values correspond to the level of strengthening expected if the Orowan mechanism
(9)

of hardening by non-deforming particles were operative. Ashby's model of the

Orowan strengthening contribution gives:

_0.85 9Gb [fg_]
TP = 5T X In 5 . (6)

The definition of terms and the appropriate parameters for the Ni-ZThO2
alloy are:

Tp = shear stress increment due to Orowan particle hardening

G = shear modulus of matrix = 11.75 x 106 psi (81.1 x 103 MN/m2) at 25°9G(25)

b = magnitude of the Burger's vector

r_ = average planar particle radius = (V/2/3) (rv) - 82 R (0.0082 um)

0

A = mean planar edge-tb—edge particle spacing = d-2rg, where d =
mean planar center-to-center particle spacing; A = 1340 R (0.134 ym)

© = averaging factor for screw and edge dislocations (26) = 1.23,
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After converting to tensile stress, the calculated value of Gp is 25,400 psi

2
(175 MN/m™). If the calculation is made for the case of only edge dislocations
(9)

bowing between particles , the result is CP = 20,600 psi (142 MN/mZ).

It is of interest to compare the relative room temperature hardening
capability of second phase particles with that of grain or cell boundaries,
Starting with a single crystal of pure Ni, an increase of 21,000 psi (145 MN/mZ)
in the 0,2% tensile yield strength can be achieved by adding 2.58 vol.,% of

randomly spaced 'I'hO2 particles having an average particle diameter of 0,02 ym, i.e.,
a mean planar edge-to-edge particle spacing of 0.134 ym, From Figure 18, it is

seen that the éame increment in strength can be achieved by grain boundaries or
tangled dislocation cells which have a spacing of 5.17 um; i,e.,

£ = 0.44 U m-llz. Another way of examining this is to determine the expected
inerease in yield strength of pure Ni if the boundaries had the same spacing as
particles in Ni-ZThO2 (0,134 pym). Extrapolating the pure Ni results in Figure 18

1z _ 2,73 u m-1/2’ it is found that a yield strength increment of 133,500 psi

to 4~
(921 MN/mZ) is realized, compared with the 21,000 psi (145 MN/mz) achieved by
particles which had the same edge-~to-edge spacing as the boundaries, Thus, for
a given spacing between boundaries or between particles, boundaries are more
than six times as potent in raising the room temperature yield strength than
are particles.

At this point it is worth examining the concept of additive strengthening

(13) and Hansen and Lilholt(27).

mechanisms which has been proposed by Webster
Webster considered 0,2% offset yield strength results for Ni, Ni-2Th0,, Ni-20Cr,
and Ni~200r—2Th02, and Hansen and Lilholt have reviewed the literature for a

number of materials, e.g., SAP-type alloys, dispersion strengthened Ni and Ni-Cr

alloys, ferrous alloys, and dispersion strengthened Zr. Both came to the conclu-

sion that strengthening at room temperature by dispersions, solid solution
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additions, and refinement of grain size and dislocation substructure could be
considered additive., This led Hansen and Lilholt to propose the following

relation for the 0.27% offset yield strength:

=0+ cp + 0, T 0.1 > 7

%.2% v.8. gb

where Oco1 = strength increment due to solid solution additions, ng = strength
increment arising from grain or cell boundaries, Ob = strength increment (Orowan
contribution) due to second phase particles, and o, can be considered the 0,27
yield strength of a pure base-metal single crystal. Considering, for the moment,
Equation (7) without solid solution strengthening effects, the following relation

should hold:

_ : -1/2
0002% v.8. = oo + CP + k4 . (8)

Yet, from Figure 18, it is seen that the particle contribution, op’ diminishes as

£-1/2 '1/2), Thus, Equation (8) is not strictly valid,

1/2

increases, i.e,, Up = £(4
However, for grain or cell sizes in the range corresponding to 4 ~0to 1.2 u m-i/Z
Equation (8) is a reasonable approximation. 1In fact, Webster and Hansen and Lilholt
were led to the additivity conclusion by their plots of ¢ versus 2_1/2 over approxi-
mately this 2-1/2 range, where it was possible to draw parallel lines for dis-
persion-containing and dispersion-free glloys of the same base composition.

In an attempt to ascertain whether the substructure refinement played a
similar role in strengthening at high temperatures, the Hall-Petch analysis was
applied to the Ni-2ThO, results for temsile tests at 1093°C, Figure 19 is a plot
1/2

of the 0.2% yield strength of Ni-2ThO, at 1093°C as a function of £ /%, Here

it is seen that there is a great deal of scatter, and thus no good correlation

between yield strength and 2—1/2.
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FIGURE 19. Dependence of 0.2% offset yield strength on grain

or cell size for Ni-2ThQOp tested at 1093°C.
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It became apparent, however, that the high temperature yield strength

did relate to the shape of the grains or cells, and in fact, 0y g

tional to the grain aspect ratio; i.e.,, ratio of grain or cell length, L, to grain

was propor-

or cell width, £, Table 9 lists values of L/4 for some of the Ni--ZThO2 specimens

examined in this study, together with previous results on TD Nickel bar(2’3’30’36)

and recrystallized TD Nickel which contained very coarse elongated grains.(2’30)
From the available micrographs, it was not possible to determine L/4 for all of

the Ni—ZThO2 specimens examined in this program, In particular, if the ratios were
S 12, it was impossible to obtain an accurate measure of the grain length, L,

However, the available data are plotted in Figure 20(a) as versus L/4, and

%.s.
an excellent correlation is obtained., Similar correlations with stress-rupture and
creep behavior are obtained in Figures 20(b) and (c), respectively, and this will
be discussed later,

An important feature of Figure 20(a) is the observation that the two
data points for recrystallized TD Nickel fit the curve. These materials had coarse

(2,30)

elongated grains , compared with very fine elongated grains for the other
points in Figure 20(a). Thus, in this case, the grain fineness or coarsemess is
not measurably important as far as influencing the yield strength at 1093°C.
Instead, the grain aspect ratio appears to be the dominant factor,

A physical interpretation of Figure 20(a) is that grain boundary
sliding plays an important role in high temperature yielding. Wilcox and Clauer(3)
previously suggested this to be the case for high temperature creep of TD Nickel

bar, and Fraser and Evans(zg) and Doble, et al.(so)

felt that grain boundary
sliding was the predominant mechanism for yielding of Ni-ThO2 alloys tensile

tested at high temperatures., When most of the grain boundaries are parallel to

the stress axis, i.e., a highly elongated microstructure, there is, on average,
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a low resolved shear stress on the boundaries, This minimizes the overall amount

of sliding., The maximum sliding would occur when the grain aspect ratio was

unity (equiaxed grains). It is probable that a coarse equiaxed structure would
have better high temperature strength than a fine equiaxed structure, because having
fewer boundaries would reduce the total amount of sliding. Thus, there can be a
grain size effect at high temperatures. The observation that the two recrystallized
TD Nickel data points fit the Oy g, versus L/4 plot in Figure 20(a) suggests

that any grain size difference here has a second order effect on the yield strength,
compared with the influence of the grain aspect ratio. The grain elongation effect
should be apparent at temperatures above ~ 0.5 Tm (~ 600°C for Ni-ZThOZ) since

here there can be a significant contribution of grain boundary sliding to the

total deformation.

At 1093°C it appears that sliding plays a dominant role, although cer-
tainly accommodation deformation* within grains must occur, At lower temperatures,
approaching 0,5Ty,, or at much higher strain rates, it is expected that there
would be a larger relative contribution of grain interior deformation to macroscopic
yielding, Although there are not enough data presently available to quantitatively
assess this in the case of Ni-ThO2 alloys, Figure 21 schematically depicts the
anticipated behavior. Here L/4 is plotted horizontally, but it is assumed that
the grain width, 4, is constant., If this assumption were not made, then compli-
cations would arise because at higher rates and lower temperatures grain size
strengthening would be superimposed on the grain aspect ratio effect. The interplay
between grain size strengthening and deformation due to grain boundary sliding

might be similar to the effects observed in dispersion strengthened zinc by

*
It is assumed that diffusional accommodation processes are too slow to be

important during yielding.
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(a) Constant € (b) Constant T, where T >>05T,,
T, <05Tn ¢,
4 )
£ £
7 »
= kel
@ (]
> >
T,>T,>05T,>T,
Equiaxed (L/2=1) Equiaxed (L/&=1)
Grain Aspect Ratio, L/X — Grain Aspect Ratio, L/X —
{assuming constant R} {assuming constant k)

FIGURE 21. Schematic plots showing how test temperature and strain rate may
influence the relation between yield strength and grain aspect
ratio, L/4, in Ni-ThO, alloys.

4€3D

Tromans and Lun In Figure 21(a), there is no influence of aspect ratio at

T1 < 0.5 Tm. This curve would be shifted to higher stresses as temperature is

further lowered, or as /4 was decreased at constant T and constant L/4; i.e., the
usual Hall-Petch strengthening, At T2 > 0.5 Tm grain boundary sliding assumes
some importance in yielding, and here there is an effect of grain aspect ratio.

At still higher temperatures T3 >> 0.5 Tm, grain boundary sliding contributions

to yielding become much more importaht, and the influence of L/4 on the yield
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strength is more pronounced. At these very high temperatures (1093°C in the case
of Ni-ZThOZ) grain width, £, is not significantly important from the Hall-Petch
strengthening point of view, since most of the macroscopic yielding occurs by
boundary sliding.

Similarly, Figure 21(b) reveals the anticipated effects of strain rate

at T >> 0.5 Tm. For very high rates of deformation, & grain boundary sliding

1’

may not occur, and hence there is no effect of aspect ratio on yield strength.

Here there would be an effect on strength due to grain width, 4. At progressively

-

lower strain rates, 62 and %3, sliding would become more pronounced, and there
would be a larger influence of aspect ratio on yield strength,

The conclusion that an elongated grain structure is desirable for high
temperature strength is not new. For example, workers in the lamp filament industry
have known for many years that doped tungsten, which recrystallizes to a coarse
elongated grain structure, is far superior to undoped tungsten, which recrystallizes
with an equiaxed grain structure, The benefit of doping is derived in part from
enhanced creep resistance due to the elongated grain structure, Also, Ver Snyder
and Guard(32) obtained directional grain structures in a cast Ni-Cr-Al alloy,
and found improved high temperature ductility and creep rupture behavior compared
with the same alloy having an equiaxed grain structure, Bourne, et a1(72) dis-
persion strengthened Pt and Pt alloys with a number of oxides and carbides, They
produced stable elongated grains by thermomechanical processing, with grain
aspect ratios as high as 12,5, and they found that high temperature creep
rupture life, t. increased with increasing L/%4, For example, in a thermo-
mechanically processed Pt-0.047% TiC alloy they found the following results: at
1400°C and 700 psi (4.8 MN/mZ) t, = 800 hours for L/4 = 5 and t. = 1200

hours for L/4 = 12,5, Recently, Benjamin(33)

(34)

and Benjamin . and

Cairns reported a new superalloy development involving 'mechanical
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alloying' which allowed them to combine Y' hardening for low temperature strength
with oxide dispersion strengthening for high temperature strength. Their
material was hot extruded, and when recrystallized it had a coarse, very elon-
gated grain structure, 1In this condition, the ultimate tensile strength at 1093°¢
was equivalent to that of TD Nickel bar. Prior to this development, Cook, et al.(35),
produced in sheet form a Ni-base alloy strengthened by Y' which also contained
ThO2 particles., Their material had low temperature strength equivalent to Nimonic
80-A in the heat-treated condition, but at high temperatures (3:95000), the usual
ThO2 particle strengtheniné was not achieved. The microstructure contained fine,
nearly-equiaxed grains, and the primary mode of deformation at high temperatures
was probably grain boundary sliding. Because pronounced sliding took place at
relatively low stresses, compared with that required to produce macroscopic matrix
yielding, the potential ThO2 strengthening was not utilized,

At this point it is relevant to compare the present results on‘Ni-ThO2

(20,29,30) which have related thermo-

with the work of previous investigations
mechanical processing by drawing and swaging to room temperature and high tempera-
ture strength properties., This is done in Figure 22, which shows plots of ultimate
strength at 25, 871, and 1093°C as a function of reduction by drawing or swaging.
Ultimate strength, rather than yield strength, is plotted since several of the
previous investigations reported only this property, Also included in Figure 22
are results from the present study and from the work of Fraser and Evans(zg) on

the influence of drawing on grain and cell size. The room temperature strength

of Ni—ZTh02 drawn by Procedure A increases with increasing drawing strain in the
same general fashion as the earlier work of Tracey and Worn(zo), and this is
associated with substructure refinement, However, the strength at 87100(29) and

(30)

109300 behaves somewhat differently from the results obtained én this program,
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FIGURE 22. Room temperature and high temperature strength, and grain
size of Ni-2ThO, alloys as a function of reduction by
drawing or swaging. Results of this work are compared
with those of previous investigators, and in each case the
starting material was extruded bar.
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Figure 22 shows that after ~ 707% reduction by'drawing, the strength gt 871°C
remains constant with further working. Also, after swaging, the strength at
1093°C remains constant for strains greater than ~ 85%. However, the strengths
at 1093°C of Ni-ZThO2 drawn by Procedures A and B in this study continue to
increase with increasing drawing strains up to ~ 93%. A possible explanation for
this difference is that Fraser and Evans(zg) and Doble, et al.(30), reached a
constant grain aspect ratio at high working reductions, but this did not occur

in the present study,

(2)

In avprevious study, Wilcox and Jaffee found that ThO2 particles
in recrystallized TD Nickel produced an incfease in yield strength, compared with
pure polycrystalline nickel, over the entire temperature range 25 to 1200°C. The
increase in 00.2% v.s. above that of pure Ni was 22,000 (152 MN/mz) psi at 25°¢
and 9000 psi (62,1 MN/mz) at 1200°C, The recrystallized TD Nickel had coarse
elongated grains, with an L/4 = 8,7 (Table 9). Wilcox and Jaffee rationalized
the increase in yield strength over the entire temperature range in terms of the
Orowan mechanism, They used Equation (6) to calculate Tb and found good agree-
ment between the experimental and calculated results. However, based on the
findings of this research program, it now appears that above “’60000, where
grain boundary sliding becomes important, the agreement with the Orowan mechanism
may have been fortuitous, For example, if the recrystallized TD Nickel had a
drastically different grain aspect ratio, say L/4 = 2, then the yield strength
would have been ~ 67% lower at 1093°C (Figure 20a), and agreement with the
Orowan mechanism at this temperature would not have been realized.

The observation that grain aspect ratio is important in high temperature
yielding of Ni-ThO2 alloys, can be used to explain the difference in results

(2) (36)

between the work of Wilcox and Jaffee and Doble and Quigg .  The following

results were found by these investigators:
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0.2% Y.S. at 1093°C

Material L/4 psi MN/m* Reference

1/2" (1.27 cm) dia, TD 12,5 £ 2.5 17,000 117 2)
Nickel bar

Recrystallized TD Nickel 8.7 11,900 82.1 » (2)

1" (2,54 cm) dia. TD Nickel ~ 10.0 13,300 91.8 (36)
bar (Ann. 1 hr, 1371°C)

Recrystallized TD Nickel ? 14,600 101.0 (36)

At 109300, Wilcox and Jaffee found a reduced yield strength after recrystallization
and this is now attributed to a lower grain aspect ratio than that in the 1/2

inch (1.27 cm) diameter TD Nickel bar, The similarity in yield strength results

of the 1 inch (2.54 cm) diameter TD Nickel bar and the recrystallized TD Nickel,
obtained by Doble and Quigg, may possibly be due to the fact that both materials

had similar grain aspect ratios.

The above discussion should not be construed to indicate that dispersion

(or even substructure) strengthening is not important at hich temperatures,

However, the grain aspect ratio must be large (preferably > 10) before these

strengthening mechanisms can be effectively utilized to make matrix vielding more

difficult, For optimum high temperature strength, it would be desirable to have

L/4 > 15.

Creep and Creep Rupture

In this phase of the program only the dispersion strengthened alloy,
Ni-2ThO,, was creep tested, and all tests were performed at 1093°%, Only
material drawn by Procedure B was extensively tested, since this method of working
more closely approximated commercial practice. In addition, it was expected that
the microstructure would be stable as a result of recovery during the final
1200°¢C anneal, whereas recovery or even recrystallization of material drawn by

Procedure A could occur during creep testing, However, one comparison was made
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between specimens of Ni-ZThO2 drawn by Procedures A and B, and the results are
shown in Figure 23, The specimens had a total reduction by drawing of ~ 50% and
were creep tested at 4000 psi (27.6 MN/mz). The specimen drawn by Procedure B
(intermediate anneals) had a longer primary creep range, a lower minimum creep

rate, and a longer time to rupture than the specimens drawn by Procedure A,

A1l of the creep results on Ni-ZThO2 are listed in Table .10. The data
are plotted in Figure 24 as log émin versus log 0, and in Figure 25 as log tr
versus log O, where &min = minimum creep rate, 0 = applied stress, and t . = time
to rupture, In both Figures 24 and 25, linear relations are apparent, which

lead to the proportionalities
€. «0 (9)

t xg0 . (10)

Increasing the amount of total reduction by drawing Procedure B had
two effects: (1) the plots are shifted to higher stresses for a given &min or
t. and (2) the slopes, or n values, increase., The exponents increased from
6.7 to 22,0 for minimum creep rate (Figure 24) and from 7.8 to 19,6 for rupture
life (Figure 25), Although stress exponents of n = 4 to 5 are common for creep
of single crystals and pure polycrystalline metals, very high stress exponents are
common for complex materials such as dispersion strengthened nickel alloys(3’5_7’34).
The qualitative argument that has been used to explain this behavior is that these
complex alloys have a very high internal stress, g,. Thus the effective stress,
O, acting on dislocations is a small fraction of the applied stress, O, since
Ce =0 - Gi' Even if grain boundary sliding accounted for a large fraction of

the total creep strain, the above argument would hold if accommodation deformation

by dislocation glide or climb within grains were the rate controlling creep process.
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FIGURE 23. Creep curves of Ni-2ThO, specimens drawn by
Procedures A and B,
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FIGURE 24, Effect of drawing by Procedure B (intermediate

anneals) on minimum creep rate of Ni-2ThOy at
1093°C.
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Unfortunately, in materials such as these it has not been possible to identify a

rate controlling creep process, although at high temperatures grain boundary
sliding certainly appears to be the major mode of deformation,

The most important feature of Figures 24 and 25 is that Ni-ZThO2 becomes
more creep resistant at higher total reductions by drawing Procedure B, This is
illustrated in a different way in Figure 26, In this figure, the stress to cause
a minimum creep rate of 10‘4 hr-l and the stress to cause rupture in 100 hours
at 1093°C are plotted as a function of total reduction by drawing, It is seen
that material drawn 92,5% is about five times "stronger" than extruded plus

annealed material,

Also included in Figure 26 are typical 100 hour rupture life data from

Fansteel Metallurgical Corporation(37) for TD Nickel bar and sheet, The Ni-2 ThO

2
drawn 92,5% has a 100 hour rupture life comparable to the best commercial sheet
and to 1-1/4 inch diameter TD Nickel bar, but is about 4000 psi (27.6 MN/mz)
"weaker'" than commercial 1/2 inch (1.27 cm) diameter TD Nickel bar at 1093°C,

The values of minimum creep rate times rupture life (émin. tr) are
listed in Table 10 for Ni-ZThO2 drawn various amounts by Procedure B. For a

. .o . (38) . .
given drawing reduction, the usual empirical relatlon( ) is approximated:

Emin . tr ~C , (1)

The average value of C decreases from ~ 1.2 x 10-2 for extruded plus annealed
material to ~ 0.4 x 10-2 for material drawn 92,5%. The average value for C,

from all tests is ~»10'2. Thus, for example, a rough estimate of the minimum
creep rate for material which ruptures after 100 hours at 109300, would be

émin = 10-4 hr—l. Figure 26 shows that the stress required tovgive a creep rate of

10—4 hr-1 is approximately the same as that required to cause failure in 100 hr,
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Returning to Figure 20(b) and Figure 20(c), it is seen that the grain
aspect ratio has the same effect on rupture life and creep strength as it did
on yield strength, As the aspect ratio is increased, the 100-hour rupture stress
and the stress required to give a minimum creep rate of 1()"4 hr-l increase, The
explanation again involves grain boundary sliding. The more elongated the struc-
ture, the less sliding and the lower the creep rate at a given stress, or alternately
the higher the stress required to produce a given minimum creep rate, The compari-
son in Figure 26 suggests that the Ni-2Th02 drawn 92.5% has an effective L/4 about
the same as the best TD Nickel sheet and the 1-1/4 inch (3.18 cm) diameter TD Nickel
bar, but a lower grain aspect ratio than the 1/2 inch (1.27 cm) diameter TD Nickel
bar. It is anticipated that the aspect ratio effect on creep behavior would be
more important at lower temperatures than the effect of L/4 on yield strength.
This is because creep rates are generally slower than normal tensile strain rates,
and thus the rate effects in Figure 21(b) would be important.

Ashby and RaJ(39)

have treated continuum aspects of grain boundary
sliding and diffusional creep. They considered the cases where sliding was
accommodated by: (1) elastic strain, (2) diffusive flow of matter, and (3)
plastic flow by dislocation motion. In their most detailed model they examined
diffusional accommodation of grain boundary sliding for grains with a large

aspect ratio, a situation which is relevant to the present Ni—ZThO2 materials,

The result of their analysis gives the shear strain rate, VY, in creep as:

L w.T Q
Y= ) 1/2 s (12)

where Ta = applied shear stress on the boundary
{ = atomic volume

k = Boltzmann's constant

L]

T absolute temperature
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x = effective grain size = (Lo,@)ll2
Dv = volume diffusivity
Db = grain boundary diffusivity

it

grain aspect ratio = L/4

]

grain boundary thickness,

This relation says that creep rate is proportional to Ta and that some combina-
tions of volume and grain boundary diffusion influences the creep rate; i.e,,

the activation energy for creep, Qc, should be QV s QC ; Qb where QV = activation
energy for volume diffusion, and Qb = activqtion energy for grain boundary
diffusion, Yet for TD Nickel bar creep tested from 700-1100°C, where L/4 ~ 12,
it was found that Qc ~ 3 Qv.(3) Also a very high stress exponent, n = 40, was
found. Similarly, in this work it was found that the stress exponent increased
with increasing L/4. Thus the model represented by Equation (12) does not
describe the experimental creep results for Ni-ZThO2 with a high grain aspect
ratio.

"Ashby and Raj(39)

also considered grain boundary sliding where particles
in the boundary impede the sliding, Here again, the sliding rate was propor-
tional to Ta and the activation energy for sliding should be between that for
volume and grain boundary diffusion. Thus this model is not directly applicable
to the present results,

It appears that a mechanistic interpretation of the high temperature
creep behavior of Ni-ZThO2 having L/4 > 1 is indeed much more complicated,
Development of a rigorous model should include the following consideratiomns:

(1) The main mode of deformation at high temperatures is grain

boundary sliding,

(2) The creep rate is proportional to the grain aspect ratio,

at least for T ~ 0.8 Tm,
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(3) 1t is possible that both diffusional and dislocation deforma-
tion accommodation are operative, with the former being more
important at higher temperatures and lower stresses and the latter
more important at lower temperatures (approaching 0.5 Tm) and
higher stresses,

(4) Creep is not Newtonian viscous, but rather very high stress
exponents are obtained, and these appear to increase with
increasing grain aspect ratio,

(5) Apparent activation energies for creep are very high, say
‘2 to 3 times the activation energy for volume self-diffusion.(3’34)

Such activation energies may not have any direct physical signi-

ficance, but it would be desirable for any viable model to

explain their origin,

Texture

44
There have been several previous investigations(20’21’30’40 44) on

Ni-ThO2 and Ni-Cr-ThO2 alloys which included texture determinations on sheet or
bar material, and some of these have examined texture as a means of

(42,44)

strengthening and the possible influence of deformation texture on recrystal-

lization resistance or recrystallization textures(20’30’40’41’43). Before discussing
the results of this program,and the previous texture determinations on dispersion
strengthened nickel alloys, it is appropriate to briefly review some aspects of
deformation and recrystallization fiber textures in dispersion-free FCC metals

and alloys.

It is generally observed that extrusion and drawing operations, which

give equivalent deformations, result in similar textures provided that
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recrystallization does not occur during extrusion, In pure metals the deformation
fiber textures are composed of two main orientations, having <111> or <100>
directions parallel to the rod axis(as). The relative proportions of these
orientations vary between different metals and single phase alloys, Chin and
English(46) have shown that the ratio of <100>/<111> varies with stacking fault
energy, YV, (or more strictly with Y/Gb where G = shear modulus, and b = the magnitude
of the relevant Burgers vector), For very low values of Y/Gb the <111> fiber
texture predominates, but as Y/Gb increasés, the <100> content increases to a
maximum and then decreases to a very low value. For metals with high VY's such

as aluminum and nickel, the <111> component normally represents 80% to 100% of

(47)

the volume after heavy drawing, Chin has analyzed in detail the effect of

various deformation modes on texture formation and his main conclusions were:

(1) For homogeneous deformation by slip on {111}<110> systems, both
<l11> and <100> orientations are stable, but from a randoﬁly
oriented starting material, the <l111> is predicted to become
about twice as strong as the <100>,

(2) 1If cross slip is so easy that,the deformation is effectively
{hk 4 }<110> slip, then there is very little difference from case (1).
In fact, the volume of material which can rotate to <l11> is slightly
increased.

(3) 1If gross mechanicél twinning occurs, the general picture is rather
unclear, However, the <111> orientation is susceptible to twinning
during drawing while the <100> is not, and it appears that combina-
tions of twinning and slip should favor the <100> orientation.

The intense <100> component in silver is believed to form in this
way.

(4) 1t has been shown experimentally that when crystals of the <100>

orientation are drawn, the deformation is often not a homogeneous
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slip process. The phenomenon of deformation banding occurs in which
separate volumes of the crystal deform in approximately plane strain
in different modes such that over the whole specimen the strain is
the imposed axi-symmetric strain. It has been shown that this in-
homogeneous deformation occurs because it involves less total work
than homogeneous deformation of the <100> orientation. The
orientations of the metal inside the deformation bands are not
stable, but rotate toward <111>. It is important to note that this
is the only recognized mechanism by which material in the <100>
orientation can rotate away from <100> in metals having moderate or
high v values, In metals with very low Stacking fault energies,
intrinsic faulting may also achieve such rotation.

The textures formed on deformation of rods or wires are usually greatly

modified during recrystallization. Many different recrystallization textures have

12545 (48,49) (48)

(45)

been observed, the most common being <1OQ>(48)

and <130>(49). According to Dillamore and Roberts

, <113> , <115>

s
recrystallization to <100>
appears to be favored in a predominantly <111> deformed matrix while <112> is
favored in <100>, It is certainly true that the <100> component in extruded
aluminum comprises recrystallized grains and that the accompanying <111> component
represents deformed meta1(48). In othef work it has been shown that favorable
orientation relationships for rapid growth exist between recrystallized grains

(49)

and the deformation texture, One explanation for the presence of <100>

recrystallized grains is that these have the lowest elastic strain energy(so)

under

the conditions of applied stress in extrusion. It must be concluded, however,

that recrystallization fiber textures are not well understood, and seldom predictable,.
All of the texture results on Ni and Ni-ZTh02 are listed in Table 11

and plots of the <100> and <111> texture concentrations as a function of

drawing by Procedures A and B are shown in Figures 27 and 28, In Figures 27(a)
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and 28(a) the texture concentration within 10° of the rod axis is plotted versus
drawing strain for both’Ni and Ni-ZThO2 and similar plots are made in Figures 27(b)
and 28(b) for the texture concentration within 20° of the rod axis. The speci-
mens in Table 11 are numbered 1-20, and the corresponding graphs of normalized
intensity versus angle of inclination for the {111} and {200} reflections are
given in Appendix A (Figures 1-A through 20-A) for each specimen.

Prior to the quantitative texture measurements, some selected back
reflection photographs were taken on Specimens 1-5 (Ni-ZThOZ, drawn by Procedure
A). Specimen (1) showed very similar back’reflection patterns at the centerline
and at the surface (surface ground and then electropolished after extrusion) al-
though the texture appeared to be a little weaker at the surface. In specimens
(3), (4), and (5), the sharp fiber textures were evident at the centerline, but
the drawn surface was apparently texture-free, showing continuous Debye rings,
In specimen (4),where an attempt was_made to chart the texture photographically
through the wire, it appeared that at least the outer quarter of the radius
showed barely discernible signs of texture. All of the texture components de-
tected on the films corresponded to the quantitative goniometric texture
measurements.,

The following results on quantitative texture measurements were
obtained:

(1) Ni-2ThO, drawn by Procedure A; refer to Table 11, Figures 27(a)
2
and (b) and Figures 1-A through 5-A,

The as-extruded Ni-ZThO2 was very highly <100> textured, but also had a small
amount of <111>, With increasing drawing reductions the content of <100>
decreased, while still remaining the strongest single component, and the <l11>
developed continuously. These fesults are consistent with the previous findings

of Tracey and Worn(zo). There was also a <112> component which was particularly
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obvious in specimens (4) and (5); see Figures 4-A and 5-A., A manifestation of

the <112> component is the peak in the {200} reflection at ~ 65° from the axis,

In order to check for the presence of <l12> oriented material at the very center
of specimen (5) a forward reflection phogograph was taken from a sample thinned

to 0.01 inch (0.025 cm) diameter, No trace of <112> orientation could be detected
here, although the <100> and <111> components agreed closely with the goniometric
measurements., It must be concluded that the <l112> component was present at or
near the surface of the wires, and probably arose due to shear resulting from

surface friction.

(2) Ni-ZTh02 drawn by Procedure B; refer to Table 11, Figures 28(a)

and (b) and Figures 6-A through 10-A,

On annealing the extruded bar there was a very slight increase in the <100>,

and decrease in the <111> components. As the processing continued by Procedure
B, the <100> became depleted, but not quite as rapidly as in drawing Procedure A,
The intermediate anneals prevented to some extent rotation away from <100>, This
may be, as suggested by Dillamore(51), because annealing destroys the disloca-
tion arrangement by which deformation bands rotate material from <100>, Thus

on further working, rotation back to <L00> ocpurred by homogeneous slip. The most
striking difference between drawing Procedures A and B is that the intermediate
anneals effectively prevented the formation of the <l11> component, On close
examination of the subsidiary peaks in specimens (7), (8), (9), and (10)

(Figures 7-A through 10-A) it is seen that these are at <l14>, <113>, <113> to
<112>, and <l12> to <223>, respectively. In specimen (10) there was 30% re-
crystallization so this result should probably be ignored, However, it is clear
that a slow rotation process occurred from <100> to <l11>, The intermediate
anneals acted to delay the rotation process. A possible explanation of this is

as follows., The presence of the ThO2 particles limits the blocks of material
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which can rotate to very small volumes. These blocks therefore are highly
misoriented small volumes, which on annealing are thermodynamically unstable.
Some are therefore swallowed up into the bulk of the texture by short range
boundary migration, This, admittedly speculative, explanation accounts for the
sense of rotation and the delaying action of the anneals., After a sufficiently
large total deformation by Procedure B it would be expected that the <111>
orientation would be achieved, An alternative explanation for the subsidiary
peaks might be in terms of a surface texture.

(3) Pure Nickel drawn by Procedure A; refer to Table 11, Figures 27(a)
and (b) and Figures 11-A through 15-A,

The extruded pure nickel had a fairly strong <L00> fiber texture and also a
spread of orientations approximately <113> - <112> - <223>, From examination of
the grain structure (Figure 2) it is clear that all these components must
represent recrystallization textures, During drawing by Procedure A, much of the
spread around <112> rotated to <l11> which soon became the strongest texture
component, The initial <100> component was rapidly depleted, presumably by a
deformation banding mechanism, since this orientation should be stable in homo-
geneous deformation. A very significant <112> texture also developed with in-
creasing strain, However, transmission X-ray photographs from the center of the
wires showed no trace of this orientation. Thus, as in the Ni-ZTh02 alloy, it
is assumed to be a surface, or near surface, shear texture,

(4) Pure Nickel drawn by Procedure B; refer to Table 11, Figures 28(a)
and (b) and Figures 16-A through 20-A,

Annealing the extruded nickel had very little effect on the texture. This
observation is perhaps to be expected since there was little change in the micro-
structure,” The strong <100> component became a little sharper. After the

subsequent deformations and anneals, the texture was almost random. The

The annealed Ni texture specimen was taken from a different part of the extru-
sion than the metallographic and tensile specimens. The texture specimen showed
much less grain growth than is observed in Figure 4a.
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fluctuations in intensity shown in Figures 17-A to 20-A are possibly spurious,
resulting from the relatively large grain size of this material, The randomizing
effect obtained by recrystallization after small strains is a well documented

phenomenon.

Because of the considerable differences in microstructure developed in
Procedure B, no direct comparison is valid between the Ni and Ni-ZThOZ. The
following discussion is therefore limited to drawing by Procedure A, The
extrusion textures of the Ni and Ni-2Th02 were qualitatively rather similar,
although in the pure nickel the subsidiary peak was around <112> rather than
<111> as in the Ni-ZThO2 alloy. The major <l00> component was also weaker in
the pure nickel,

The most important difference is that on drawing, the initially strong
<100> component was reduced to a very low level in the pure nickel, but remained
strong (although somewhat depleted in volume) in the Ni-ZThOZ. According to

Chin's analysis(47)

, the only mechanism allowing rotation away from <L00> is
that of deformation banding, In the presence of fine particles, it would be
expected that the difficulty of accommodating strain around the particles would
reduce the size of potential deformation bands. 1In this way the ratio of defor-
mation band surface to volume would be greatly increased, The surfaces of defor-
mation bands are known to be very highly strained,high energy sites(sz). In-
creasing the proportion of these would be expected to inhibit deformation banding
since the feasibility of the process depends on a delicate selection of the lowest
energy deformation mechanism,

Extrusion, drawing, or swaging textures in dispersion strengthened nickel

(20,21, 30, 53, 54)

and copper have been studied by several workers , and their results
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show some interesting differences compared with pure metals, The previous results

on Ni and Ni-ThO2 alloys are consistent with the present results., Tracey and

(20)

Worn found that in hot extruded Ni-Z.SThO2 (~ 98% reduction) the texture was

approximately 80% <100> and 107% <111>, They felt that the <100> component arose
through recrystallization, although the evidence for recrystallization was not

(21,30,53)

obvious., In three other studies , on extruded dispersion strengthened

nickel, the major component was identified as <100> although for a smaller ex-

(30)

trusion ratio there was an additional strong <111> component, In addition,

(21)

Worn and Martop have reported that <l11> is strengthened with increasing
volume fraction of thoria although it was never observed to become as strong as
the <100> component,

The information on drawing textures in Ni-ThO2 alloys is rather confused
by the presence of strong starting textures resulting from prior extrusion. During
drawing, the strong <100> starting texture is somewhat weakened, and the <L11>
increases., This behavior is qualitatively the same as in pure nickel, but with
the difference that the <100>/<111> ratio remains much larger (~ 1) than for the
pure metal (~ 0.1) drawn in excess of 90% reduction. This condition is observed

even when the starting texture is not strongly biased towards <100>(30)

. Tracey
and Wornczo) observed that on amnealing cold drawn Ni-2,5Th0,, the <100> orientation
increased slightly while the <111> decreased. Unfortunately, they did not indicate
whether or not gross recrystallization occurred during the anneal, This behavior
is similar to that observed in this program on Ni-ZThOZ.

The most thorough study of fiber textures in a dispersion strengthened

(54)

FCC metal is that of Liesner and Wassermann on the copper-alumina system. These
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workers varied the size and volume fraction of particles, and examined the
textures after extrusion, drawing, and annealing, The extrusion textures were
either <100> or <112>, the <l00> being favored by increase in volume fraction of
A1203, and decrease in the size of the particles. The <112> component was
explained as being a recrystallization texture while the <100> was stated to be
a warm deformation texture, recrystallization being inhibited by the numerous
fine particles.* On cold drawing the extruded material, the <100> remained
stable (in the presence of particles) while the <l12> component rotated in a
mixture of <111> and <100>, Subsequent recrystallization caused the <100> to
be replaced by <1l12>, which provides further evidence that this component is a
recrystallization texture,

Several results(ss'ss) have been reported for S,A.P. aluminum which
seem to be at variance with the results for nickel and copper based alloys., For
S.A.P, it appears that the main extrusion texture is <l111>, although <100§-may
be present to an almost equal degree with low volume fractions of alumina(ss).
Increasing the volume fraction of alumina was reported to suppress the <100>
component(56).

It was shown earlier in this report that the optimum combination of
room temperature and high temperature strengths was achieved by a fine very
elongated grain structure, To obtain this structure, recrystallization should be
prevented, When recrystallization does occur there is a loss in room temperature
strength; yet the high temperature strength may not be decreased, provided the
recrystallized grain aspect ratio is high enough. Thus when recrystallization

does occur, a high grain aspect ratio is desirable.

*
The presence of the <l00> deformation texture in extrusions is at variance with

theoretical predictions, since deformation twinning is the only mechanism known
to be capable of producing intense <L00> textures. Deformation twinning in
copper and nickel during high temperature extrusion does not seem probable,
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Although there have been several previous studies on the recrystalliza-

tion behavior of Ni-ZTh02(3O’40’41’43’53’59) and Ni-ZOCr-ZThOZ(ll), the conditions

under which these alloys are susceptible to recrystallization are not well defined,

Different workers have found recrystallization temperatures varying from ~'500°C(40)

(30)for Ni-ZThOZ. Doble, et a1.<30), came to the important conclusion

to > 1300°C
that recrystallization was influenced more by the type of working operation and
working direction than the amount of working deformation, For example, they
noted that rolling TD Nickel transverse to the extrusion axis was much more con- 7
ducive to recrystallization than rolling parallel to the axis. When rolling TD
Nickel bar in ome direction, they noted that continued rolling deformation pro-
duced a more recrystallization resistant structure in spite of the increased
strain hardening.

Doble, et al.(so) (41,43)

, and others have related recrystallization
resistance to the type of texture developed by working. These results provide
circumstanéial evidence that there may be a connection between preferred orien-
tation and ease of recrystallization. If this is indeed so, then the stabilizing
textures appear to be the <100> fiber in rod and the pure metal texture, {123}<142>
in sheet. 1In support of this, it was noted that Ni-ZThO2 drawn by Procedure B did
not begin to recrystallize until 92.5% total deformation, where the <100> component
of the texture (within 20° of rod axis) dropped to ~ 50% (see Figure 28b). However,
such a simple analysis is not completely satisfactory. Cold rolled TD Nickel
specimens with almost identical pure metal textures were found to exhibit widely
differing recrystallization behavior(So). While it is known that deformed single
crystals of certain orientations are resistant to recrystallization, all the tex-

tures found in dispersion strengthened Ni alloys are too diffuse to consist only

of such orientations, 1In addition, the presence of grain boundaries allows
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considerable scope for nucleation modes which are not possible in single crystals,
A contributing factor to enhancing recrystallization may be the breakup of the
elongated grain structure, as discussed by Petrovic, et al.(sg). This occurs for
TD Nickel bar rolled transverse to the bar axis (recrystallization prone) but not
for the same material rolled parallel to the bar axis (recrystallization resistant),
In dispersion strengthened metals, the inhibition of recrystallization
is largely due to difficulty of nucleation(Go). It seems probable that for good
structure stability, several conditions have to be satisfied simultaneously to
prevent nucleation, A strong texture will tend to reduce the differences in
Schmidt factors between grains, and so the true shear strain and the local stored
energy of deformation will be made more homogeneous, For nucleation,ka sharp
gradient of stored energy is required to allow movement of grain boundaries or
subboundaries, The presence of finely dispersed particles is known to homogenize

(61)

and to reduce substructure variation between

(62)

grains of different orientations . The particles can inhibit movement of high

the deformation substructure

and low angle boundaries, the processes by which recrystallized grains must form,

A final point is that the grain shape or subgrain shape may possibly be an impor-
tant factor. It is quite conceivable that a highly elongated worked grain struc=-
ture represents a rather stable configuration which is resistant to initial boundary
movement, This could help to explain the relative stability achieved in drawing,
swaging, and rolling parallel to the extrusion direction and the lack of stability
on cross-rolling of bar.

Once recrystallization nuclei are formed, growth appears to occur pre-
ferentially parallel to the rod axis. For example, the Ni-ZThO2 specimen drawn
92.5% by Procedure B was 30% recrystallized and the recrystallized portion
consisted of coarse, very elongated grains parallel to the rod axis. The

recrystallized grain structures in Ni—TbO2 and Ni-Cr-ThO2 alloys often are
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very directional, The explanation for this directional grain growth may be

associated with Gleiter’s(63’64)

concepts of grain boundary migration where
the migration rate of a boundary strongly depends on the boundary orientation
and the growth direction, Some amplifications of this model may provide an

explanation for the preferential growth of elongated grains in dispersion

strengthened nickel alloys.

Ni-20Cr, Ni-20Cr-2Th0,, Ni-20Cr-10W, and Ni-20Cr-10W-2Tho,

Microstructure

The microstructures of as-extruded Ni-20Cr and Ni-ZOCr-ZThO2 alloys are
shown respectively in'Figures 29 and 30.* The Ni-20Cr alloy was recrystallized,
although the TEM in Figure 29(b) shows that some subboundaries were present. The
optical micrograph of as-extruded Ni-ZOCr-ZThO2 in Figure 30(a) indicates a
non-recrystallized structure, However, the annealiﬂg twins in Figure 30fb) show
that this material was at least partially recrystallized, with the resulting
grains being extremely fine, In the optical micrographs of both alloys, there
are dark etching stringers, These are probably Cr203 particles, some of which
are very coarse (S 1 yu m) and some very fine (~ 0.05 um). The presence of the finer
Cr203 particles in Ni-20Cr is seen in the TEM in Figure 31, This micrograph was
taken from an area of the foil which had been damaged in handling, and there are
several examples of dislocation loops around particles. To the authors' know-
ledge this is the first time such loops have been shown in Ni-base alloys containing

' hard oxide particles, although such loops have been observed around overaged Y'

(9

particles in Ni-base superalloys .

Only a limited amount of the Ni-20Cr-10W-2ThOy alloy was obtained, and this
was in the extruded plus annealed condition., Hence, studies of this alloy and
its ThOz-free counterpart were confined to working by Procedure B only,.



83

. ‘“@‘gé'«z‘\‘ :
LR
.

-

e
Sl
.

(b) 30,000

FIGURE 29, Microstructure of as-extruded Ni-20Cr;
(a) optical micrograph, (b) trans-
mission electron micrograph.
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FIGURE 30. Microstructures of as-extruded Ni-20Cr-2ThO,;
(a) optical micrograph, (b) transmission
electron micrograph.
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30, 000X

FIGURE 31, Dislocation loops around particles
(probably Cr203) in as-extruded Ni~
20Cr, Photographs are from region
of foil which was damaged in handling,
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After annealing these alloys (1 hour, 1200°C in hydrogen), the resulting
optical microstructures are those shown in Figure 32(a), Ni-20Cr, and Figure 32(b),
Ni-ZOCr-ZThOZ. The anneal caused very little change, compared with the as-

extruded microstructures, It is somewhat surprising that the Ni-20Cr-2ThO, did

2
not recrystallize to a coarse elongated grain structure, which is typical of
commercial TD Nickel Chromium.

Drawing these alloys ~ 257 by Procedure A produced a heavily worked
structure, with the usual tangled dislocation cells (see Figure 33), However,
when the Ni-ZQCr and Ni-ZOCr-ZThO2 alloys were worked by Procedure B (either
drawing or swaging), the resulting microstructures were always recrystallized,
with a fairly fine slightly elongated grain structure, Examples of this are shown

in Figure 34 for Ni-20Cr and Figure 35 for Ni-20Cr-2ThO The measured grain or

9°
cell sizes for the Ni-20Cr and Ni-ZOCr-ZThO2 alloys are listed in Table 12,

‘The Ni-20Cr-10W and Ni-20Cr-10W-2ThO, alloys were obtained from Fansteel
in the extruded plus annealed condition. The treatment employed by Fansteel
consisted of a 1 hour anneal in air at 1316°C, This was 116°C higher than the
anneals given the other five alloys to begin working Proecedure B, Also, the
subsequent anneals given the two tungsten containing alloys (swaging Procedure B)
were at 1200°C. Both alloys had a substantial amount of Cr203, elongated in
stringers parallel to the extrusion axis, Figure 36(a) shows that the extruded
plus annealed microstructure of Ni-20Cr-10W consisted of very fine equiaxed
grains, The TEM in Figure 36(b) shows that some dislocation substructure was
present, and in addition reveals a particle (presumably Cr203) blocking a non-
coherent twin boundary. The Ni-ZOCr-low-ZThO2 alloy had coarse, recrystallized,

somewhat elongated grains in the extruded plus annealed (1316°C) condition

(Figure 37a), but the TEM iﬁ Figure 37(b) shows that there were still some
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(b) 500X

FIGURE 32, Optical micrographs of (a) extruded plus
annealed Ni-20Cr, (b) extruded plus annealed

Ni-ZOCr-ZThOZ.
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30, 000X

30, 000X

FIGURE 33, Transmission electron micrographs of
(a) Ni-20Cr drawn 24.47 by Procedure

A’
(b) Ni-ZOCr-ZThO2 drawn 23.7% by
Procedure A,



FIGURE 34,
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(a) 500X

Examples of optical microstructures of
Ni-20Cr (a) drawn 24.47% by Procedure B,
(b) swaged 49.1% by Procedure B.



FIGURE 35,

(b) 30,000X

Microstructure of Ni-ZOCr-ZThO2 drawn 25,67
by Procedure B; (a) optical micrograph,
(b) transmission electron micrograph.

@«
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b

(b) 30, 000X

FIGURE 36, Microstructure of extruded plus annealed
Ni-20Cr-10W; (a) optical micrograph,
(b) transmission electron micrograph.

Note particle (presumably Cr203) blocking
non-coherent twin boundary.




93

(a) 200X

(b) 30, 000X

FIGURE 37, Microstructure of extruded plus annealed
Ni-ZOCr-lOW-ZThOz; (a) optical micrograph,
(b) transmission electron micrograph.
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subboundaries present, in addition to the fine annealing twins. Swaging the two
tungsten-containing alloys 53.9% by Procedure B (using 1200°¢C anneals), gave
resulting microstructures (Figure 38) which were fine grained and nearly equiaxed.
The extremely fine grain size in the Ni-20Cr-10W alloy (Figure 38a) caused this
material to exhibit superplastic tendencies when tensile tested at 109300.*

It was observed that annealing the Ni-20Cr-2ThO, and Ni-ZOCr-lOW-ZThO2

2
alloys for 1 hour at 1200°C after working by Procedure B, always produced fine
nearly equiaxed grains, regardless of whether the working was by extrusion,
drawing, or swaging. However, the annealing treatment (1 hour at 131600) used

by Fansteel on the extruded Ni—ZOCr-IOW-ZTl';O2 produced a coarse somewhat elongated
recrystallized grain structure, An attempt was made to develop such a structure

in Ni-ZOCr-ZThO2 by annealing for 1 hour in H, at 131600. The optical micro-

2
*
graph in Figure 39(a) shows that this attempt was successful. j The TEM in

Figure 39(b) reveals fine annealing twins and very little dislocation substructure,

which is typical of commercial TD Nickel chromium.(5’12’42’65)

Thus it appears
that there is a critical amnnealing temperature between 1200 and 1316°¢ required
to produce the coarse elongated recrystallized structure in extruded Ni-20Cr-

2Th02 and Ni-ZOCr—lOW-ZTh02 alloys.

Tensile Deformation

The results of tensile deformation studies at 25 and 1093°%¢ are listed

in Tables 13 (Ni-20Cr), 14 (Ni-ZOCr-ZThOZ), and 15 (the two W-containing alloys).

See Table 15.
k% : . .
This procedure for producing coarse elongated grains in Ni-20Cr-2Th0, was
discovered near the end of the experimental program, and it was not possible
to perform any tensile or creep tests on material with this structure.
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(2) 500X

(b) 500X

FIGURE 38, Optical micrographs of (a) Ni-20Cr-10W
swaged 53,9% by Procedure B, (b) Ni-20Cr-
10W-2ThO, swaged 53,9% by Procedure B,
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FIGURE 39.

(b) 30, 000X

Recrystallized microstructure of Ni-20Cr-2ThO
annealed 1 hour in H, at 1316°C; (a) optica%
micrograph, (b) transmission electron micro-
graph,
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The data for Ni-20Cr and Ni-ZOCr-ZThO2 are plotted as a function of drawing or
swaging reduction in Figures 40-43 for tests at room temperature and 1093°%,

The strength of both alloys at room temperature (Figures 40-41) increased sub-
stantially as a result of drawing by Procedure A, and this was due to the sub-
structure refinement (see Figure 33). However, drawing or swaging by ProcedurevB
caused essentially no increase in room temperature strength (Figures 40 and 41),
and this is attributed to the fact that the 1200°C anneals recrystallized both
alloys to a more or less constant fine grain size,

At 1093°C, both alloys were relatively weak (Figures 42 and 43), com-
pared with Ni-ZThO2 (Figure 16) although drawing the Ni-ZOCr-ZThO2 alloy by
Procedures A and B did increase the elevated temperature yield strength from
~ 2000 psi (13.8 MN/mz) to ~ 8000 psi (55.2 MN/mZ). The lower strength at 109300,
compared with Ni-ZThOZ, is associated with the lower grain aspect ratio in the
Ni-ZOCr-ZThO2 specimens,

Only a limited number of tensile deformation studies were made on the
two tungsten-containing alloys (Table 15). The yield strength of extruded plus
annealed Ni-20Cr-10W at room temperature was about 30,000 psi (207 MN/mz) higher
than the Ni-20Cr alloy in the same condition. ' This was probably due to a finer
grain size in the W-containing alloy as well as some additional solid solution
strengthening. When both of the W-containing alloys were swaged by Procedure B,
they recrystallized during annealing, and the resultant room temperature strengths
were only marginally increased. However, the strength of both alloys at 1093°C
was greatly decreased by the swaging operation.

As in the case of Ni and Ni-ZThOZ, the room temperature yield strength
data of Ni-20Cr and Ni—ZOCr-ZThO2 were analyzed in terms of the Hall-Petch
relation. Figure 44 is a plot of the 0.2% yield strength at 25°C as a function of

£-1/2, and data of Webster(13) are included for both Ni-20Cr and Ni-20Cr-2Th02.
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The general trend is the same here as in the case of Ni and Ni-ZThO2 (Figure 18).
The slope of the Ni-20Cr plot is greater than that for Ni-20Cr-2ThO2, and there

is a tendency for convergence of the two curves at smaller grain or cell sizes;

i.e,, larger £~1/2 values, At 2‘1/2 = 0, the yield strength increase due to ThO2
particles is AOY s = 42,000 psi (290 MN/mZ), compared with A, = 21,000 psi

Y.S.
(145 MN/mz) for Ni-2ThO, (Figure 18). This increase in yield strength due to ThO2

particles in Ni-20Cr is higher than that calculated from Equation 6 for the Orowan
mechanism, i.e,, Gp = 24,700 psi (171 MN/mz). There is no obvious reason why
agreement with the Orowan mechanism is realized for Ni-ZThO2 but not for Ni-20Cr-
2Th02. It has been reported that short range order (SRO) can occur in Ni-ZOCr(66)L
and this may have a complicating effect on the room temperature yield strength,
However, for SRO to account for part of the strength increase would mean that

the Ni-ZOCr-ZThO2 alloy was more ordered than the Ni-20Cr alloy, and there is no

a priori reason to believe that this is the case,

Creep and Creep Rupture

The creep results for Ni-ZOCr-ZThO2 are summarized in Table 16 and those
for Ni-ZOCr-lOW-ZThO2 are listed in Table 17. A plot of log émin versus log O

for Ni-20Cr-2ThO, tested at 1093°C is shown in Figure 45, and a similar rupture

2

life plot is illustrated in Figure 46, As in the case of Ni-2Th0,, processing of

23
Ni-ZOCr—ZThO2 by Procedure B increased the creep strength, and also slightly in-
creased the stress exponents, Drawing 53.8% by Procedure B was more effective
than swaging 47.7% in increasing the creep strength and rupture life, A dis-
cussion of this difference in terms of the resulting grain aspect ratio will be
given in the General Discussion Section.

The creep results on the'Ni-ZOCr-10W-2Th02 alloy are plotted in

Figure 47 (minimum creep rate) and Figure 48 (rupture life). The extruded plus
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annealed material is seen to be stronger than that which was swaged 53,9% by
Procedure B. This is consistent with the yield strength results at 1093°C

(Table 15), and is associated with the fact that the extruded plus annealed
material had a coarse somewhat elongated grain structure (Figure 37a), whereas the

swaged material had a fairly fine nearly equiaxed grain size (Figure 38b),.

Texture

The results of texture determinations on the four Cr-containing alloys
are presented in Table 18, Figures 21A-37A in the Appendix correspond to the
specimen numbetrs (21-37) in Table 18. The results on these alloys are not as
well defined as those for Ni and Ni-ZThOZ, and thus here it is only possible to

indicate trends.

The non-thoriated alloys behaved rather like the pure nickel. The extru-
sion textures were mixed <100> and <11Z>, but the strengths of the components
varied considerably. Possibly, the position in the extrusion was an impértant
factor., Procedure B processing gave recrystallized structures and almost random
textures., The extrusion texture in the Ni-ZOCr-lOW-ZThO2 alloy was very weak,
but after annealing (and recrystallization to a large grain size) it showed sharb
<100> and <111> components. Swaging treatments by Procedure B rendered it very
nearly random,

The results for Ni-ZOCr-ZThO2 are difficult to rationalize., The ex~
truded bar had a moderate <100> texture which was apparently somewhat strengthened
on light drawing by Procedure A. Drawing by Procedure B caused <100> to decrease
and <111> to increase more rapidly than in the Ni-2Th02 alloy. However, specimen
34, which was swaged by Procedure B, had a quite different texture, with <100>
much stronger than in any other specimen of this alloy. The explanation for
this observation is not clear, since it seems unlikely that this is a result of

swaging as opposed to drawing,
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GENERAL DISCUSSTION

Microstructure and Mechanical Properties

The results of this program show that thermomechanical processing can
significantly alter the microstructure, texture, and mechanical properties of
dispersion strengthened and dispersion-free Ni alloys. The microstructural changes
cause changes in both room temperature and high temperature strength but different .
aspects of the microstructure are important in each temperature range,

Fine grain sizes or cell sizes promote strengthening at room temperature
for all the alloys via the Hall-Petch relation. A summary plot in Figure 49 shows

the room temperature yield strength versus £-1/2 for Ni, Ni-2ThO,, Ni-20Cr, and

2’
Ni-ZOCr-ZThOZ. Several features are apparent in Figure 49, |
For a given alloy base (Ni or Ni-20Cr) there is a convergence of
the dispersion strengthened and dispersion-free curves, This is associa;ed with
the fact that grain size and particle strengfhening are not directly additive,
As the grain or cell size approaches the interparticle spacing of the thoriated
alloys, the average spacing between barriers to dislocation motion, whether they
are particles or boundaries, becomes about the same. Thus the particle strengthéning
and the grain size strengthening merge at very fine cell spacings. The convergence
of Ni and Ni-ZThO2 plots is more pronounced for the proportional limit (Figure 17)
than for the 0.2% offset yield strength (Figure 18),.

At 2-1/2 = 0, the yield strength increment due to particles is 21,000
psi (145 MN/m?) for Ni-ZThO2 and 42,000 psi (290 MN/m2) for Ni-20Cr-2Th0,. For
Ni-ZThO2 this strengthening corresponds to that expected if the Orowan mechanism
controlled yielding (Equation 6). However, for Ni-ZOCr-ZThOZ, the increment in

strength is about 1.7 times that expected from the Orowan mechanism. The reason

for this difference in the two alloy bases is mnot clear,
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If the grain or cell size of Ni or Ni-20Cr were refined to the same
size as the corresponding mean planar edge-to-edge ThO2 particle spacings in

Ni"ZThoz and Ni-ZOCr-ZThOZ (0.134 and 0,145 Mm, respectively), the yield strength-

increments, 0& - (0& at £-1/2 = 0), would be as follows:
) o _-(0_ at /&'1/2 = 0)
4 s 12 — 7 5 L >
. . Mm psi MN /m psi MN /m
Ni 0.134 2,73 135,500 935 133,500 921
Ni-20Cr 0.145 2,63 243,000 1675 218,000 1505

These values for substructure strengthening are considerably greather than the

particle strengthening contributions at 2-1/2 = 0, (21,000 psi [145 MN/m? ] Ni-2ThoO

2
and 42,000 psi [290 MN/mZJ for Ni-ZOCr-ZThOZ). Thus it appears that grain size
or substructure strengthening at room temperature is about 5 to 6 times more
potent than dispersion strengthening in these alloys, based on a comparison at
the same spacing between particles and grain or cell boundaries,

Strengthening due to refinement of grain size or substructure is not
directly additive to solid solution strengthening, since the Ni and Ni-20Cr
plots are not parallel to Figure 49, In the two Cr-containing alloys strength.
increases more rapidly with increasing £—1/2 than for the two corresponding Cr-
free alloys. This effect has also been observed(71) when comparing Hall-Petch
plots of Cu with Cu-30% Zn. Here it was found that the slope (k in Equation 8)
was greater for the alloy. Thus it is concluded that the additivity relation
in Equation 7 is not valid for the present alloys, No single values Ob or Gs

ol

can be directly added to ng, because the absolute values of Up and Gso depend

1
upon grain or cell size.

The influence of microstructure on high temperature strength is both

similar to and different from that at room temperature. Dispersion strengthening
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(and possibly substructure strengthening)‘ggg be obtained at high temperatures
as well as at room temperature., However, before this can be achieved, it is
necessary to prevent or minimize flow by the weakest link; i.e., grain boundary
sliding. This can be done by elongating the grains, and testing such that the
tensile stress axis is parallel to the long axis of the grains, As the grain
aspect ratio (L/4), increases, the average shear stress on boundaries decreases
and this decreases the overall sliding rate, Alternatively, a higher applied
stress is required to produce sliding. The importance of grain aspect ratio on
yielding, creep, and creep-rupture life of Ni-ZThO2 at 1093°C was demonstrated
in Figure 20, Other data from the literature have been analyzed and the results
are listed in Table 19 and various strength parameters are plotted versus L/4
in Figure 50. The important features of Figure 40 are discussed below,

The yield strength, 100 hour rupture strength and stress required
to produce a minimum creep rate of 107 het ae 1093°C all increase linearly

with increasing L/4. This holds true, not only for Ni-2ThO,, but for Ni-20Cr-

23
2Th02, Ni-Cr-W-ThO2 alloys, and dispersion strengthened Ni-base superalloys as
well, 7Tt is recalled from Figure 20(a) and (c) that yield and creep results

for coarse-grained recrystallized Ni-ZThO2 fit the aspect ratio plots together
with results from non-recrystallized specimens with fine elongated grains. Thus,
in this case, it appears that grain size effects are not significant, and the
dominant microstructural feature is grain aspect ratio, The same appears to

hold true for alloys other than Ni-ZThOZ. The results on dispersion strengthened
superalloys(33’34) (some of the open squares in Figure 50) appear to fall within
the range of other data points. Although these materials were extruded they

(35)

had a very coarse elongated grain structure, Cook, et al, plotted the

ultimate strength of Ni-Cr-Al-Ti-ThO2 alloys at 1093°C versus grain size, and
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found that strength increased with increasing grain size, However, examination
of several of their micrographs revealed that their "coarse-grained" specimens
had a higher grain aspect ratio than their fine grained specimens. The same
general observation was made for Ni-ZOCr-ZThO2 specimens in the present program,.
Based on the preceding discussion, it appears that the grain size effect of’Cook,

(35)

et al. , may have been fortuitous, since the results appear to be equally
explicable by the grain aspect ratio effect,

Even though the present results at 1093°% suggest that grain aspect
ratio effects seem to overshadow the influence of grain size per se in high
temperature strengthening, grain size certainly must have an influence. For
example, a coarse grained material with L/4 = 1 would have fewer grain boundaries
and thus less overall sliding than a fine grained material with the same aspect
ratio, In the limit, very fine grained material would deform superplastically
at relatively low flow stresses, Furthermore, the relative importance of‘grain
aspect ratio and grain size in high temperature strengthening will depend upon
test temperature, strain rate (in tension tests), and stress (in creep tests).

The anticipated effects of these variables are depicted in Figure 21,

Figures 50(b) and (c) show that creep rates and rupture lives of thoriaéed
alloys at 109300 fall on the same aspect ratio plots as the data for Ni-ZThOZ. Thus,
here, there appears to be no influence of solid solution or Y' strengthening, and
the grain aspect ratio effect appears to be dominant. However, the yield strength
versus L/4 values for Ni-Cr-ThO2 and N:‘L-Cr-W-ThO2 alloys in Figure 50(a) lie
consistently above those for Ni-ZThOZ. It may be that the higher strain rates
in tensile deformation (compared with creep deformation) necessitate more accommo-
dation of grain boundary sliding by deformation within grains than in the case of

creep., Then any solid solution strengthening effects within grains would come
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into play, and higher stresses would be required to cause macroscopic yielding--

even though the major mode of flow was grain'boundary sliding,

The Possible Role of Texture

In order to optimize both room temperature and high temperature
strength in dispersion strengthened Ni alloys it is desirable to have a fine
very elongated grain structure, It is possible to obtain this in Ni-ZThO2 bar
or rod, where processing can be done such that recrystallization does not take
place, Yet it does not appear possible to develop a similar structure in dis-
persion strengthened Ni alloys which contain Cr, where high temperature annealing
causes recrystallization--sometimes with resulting fine nearly equiaxed grains
and sometimes with coarse elongated grains, Under certain processing conditionms,
Ni-ZThO2 can be made to recrystallize, and here the grain structure is usually
coarse and elongated,

.The questions arise: (1) Does texture have anything to do with the
relative difficulty of recrystallization of Ni—ZThO2 bar? (2) 1Is texture related
to the fact that Cr-containing alloys are more susceptible to recrystallization
than Ni-ZThOZ?; and (3) If the thoriated alloys are processed such that recrystalli-
zation does occur, does the deformation texture influence the recrystallized micro-
structure; i.e., coarse elongated grains versus fine equiaxed grains?

Complete answers to these questions require more information than is
presently available., The present results suggest that the ease of recrystalliza-
tion increases from Ni-ZThO2 to the Cr-containing thoriated alloys. It is
observed that the sharpness of the <l00> fiber texture decreases in the same
order. This could indicate a stabilizing influence of the <100> texture. Also,
the Ni-ZThO2 material drawn by Procedure B did not begin to recrystallize at

1200°C until 92,5% total drawing strain, where the <100> component of the
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texture (within 20° of the rod axis) dropped to ~ 507%. Other evidence for the

stabilizing influence of <100> is that when recrystallization occurred, it usually

commenced at the specimen sides where the texture was most diffuse, There are
several reasons why the <100> texture might be stable to formation of
recrystallization nuclei. The equivalent states of stress in all grains would
eliminate differences in stored energy which could lead to nucleation by grain
boundary migration. The substructure formed on deformation might be so uniform
that no single cell or subgrain was favored for growth to form a recrystallized
grain, The shape, as well as the size distribution of cells, may be important
here in conferrihg stability.

However, a problem with equating textures and structural stability is
that none of the textures appear to be strbng enough to consist only of the
necessary orientations, particularly as nucleation appears to be the controlling
process, and this can occur in very small volumes of material, The easier
recrystallization of the chromium containing alloys is possibly a result of
the lower stacking fault energy of these alloys, This, and the presence of any
short range order, would lead to locally concentrated planar dislocation glide
which would be expected to create large gradients of stored energy. Nucleation,
for example by grain boundary bowing at the end of a slip band, would then be

more favored than in the Ni-2ThO,, where the high local stress might be

29
alleviated by cross=~-slip,

The deformation texture may have an effect on the recrystallized micro-
structure when conditions are such that recrystallization does occur., The
production of elongated recrystallized grains suggests that grain growth parallel
to the rod axis is much faster than it is transverse to the axis, This direc-

(63,64)

tional growth may be related to Gleiter's ideas regarding the dependence

of boundary migration rate on the boundary orientation and the growth direction.
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CONCLUSIONS

(1) Thermomechanical processing (IMP) of dispersion strengthened nickel
alloys produces various microstructures which influence subsequent room temperature
and high temperature mechanical properties,

(2) One important microstructural feature observed was the elongated
grain structure, Under the conditions employed here this was always present in
Ni—2Th02. However, in dispersion alloys containing Cr, the materials often re-
crystallized to a fine equiaxed grain structure,

(3), At room temperature, substructure refinement of thoriated and ThOz-
free alloys results in strengthening by the usual Hall-Petch relation, Oy = o, +
kﬂ-l/z, where oy is the yield strength (or proportional limit), £ is the grain or

cell size, and 0, and k are constants,

-1/2 1/2

are extrapolated to £ = 0 there is

(4) When plots of Uy vs,
a strength increment, Aoo =0, (dispersion alloy) - o, (dispersion free alloy)

which corresponds to the Orowan stress for Ni-2ThO,, but is about 1.7 times the

22
Orowan stress for Ni-ZOCr-ZThOZ.

(5) Refining the substructure of Ni or Ni-20Cr by TMP to a cell spacing
equivalent to the interparticle spacing in Ni-ZTh02 and Ni-20Cr-2Th02 increases
the room temperature yield strength five to six times more than dispersion
strengthening alone,

1/2), Hall-Petch plots of

(6) At fine cell sizes (large values of 4
thoriated and thoria-free base materials converge. This means that dispersion
strengthening and substructure strengthening are not additive, since the magnitude
of dispersion strengthening is a function of the cell -size,

(7) Similarly, Hall-Petch plots of Cr-containing and Cr-free base

alloys are not parallel, which means that solid solution strengthening is not

directly additive to grain size or substructure strengthening,
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(8) At 1093°C it was shown that the yield strength, 100 hour creep
rupture life, and stress to produce a creep rate of 10-4 hr-1 all increased
linearly with increasing grain aspect ratio, L/4, where L = grain length and
4 = grain width, This correlation holds for Ni-ZThOZ, Ni-ZOCr-ZThOZ, Ni-Cr-W-ThO2
alloys, and dispersion strengthened Ni-base superalloys, and emphasizes the
importance of having a large grain aspect ratio for improved high temperature
strength,

(9) The grain aspect ratio correlation at 1093°C appears to be essen-
tially independent of grain size, since results from coarse-elongated (re-
crystallized) grain materials behave similarly to non-recrystallized materials
containing a fine stable elongated fiberous structure,

(10) The grain aspect ratio effect is attributed to the fact that grain
boundary sliding is the major mode of deformation in dispersion strengthened Ni
alloys at high temperatures., When testing is performed such that the tension axis
is parallel to the fiber axis, then increasing the L/4 lowers, on average, the
shear stress on boundaries, and this in turn reduces the amount of grain boundary
sliding.

(11) From general experience regarding grain boundary sliding, it was
concluded that the influence of L/4 on mechanical properties at high temperatures
would depend on test temperature and strain rate, the effect being more pronounced
with increasing temperature and decreasing strain ratg. Thus at ~ 0,5 Tm (“’6OOOC)

5 to 1073

under creep conditions (€ ~ 10~ hr-l) the L/4 effect should be important,
whereas at 1200°C (~'0.85 Tm) the grain aspect ratio may not affect mechanical
properties under high rate deformation conditions (€ A'104 hr-l).

(12) The role of deformation texture in the "indirect' aspects of dis-
persion strengthening is not completely clear, Extruded Ni-ZT’hO2 has a‘very

strong <100> component of the dual <100>-<111> fiber texture, and this material

does not recrystallize,
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(13) Working of Ni-ZThO2 by drawing (with and without intermediate
anneals) reduces the <l00> component and increases the <l11> components of the
texture., At very high drawing strains, Ni-ZThO2 will recrystallize (to coarse

elongated grains), Thus, the presence of a strong <L00> fiber texture may promote

recrystallization resistance,
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APPENDIX B

NEW TECHNOLOGY




B-1

THE ROLE OF GRAIN SIZE AND SHAPE ON THE MECHANICAL BEHAVIOR
OF DISPERSION STRENGTHENED NICKEL ALLOYS

The research in this report has provided New Technology, which is

briefly described below, including pertinent pages in this report describing the

New Technology.

Ttem 1.
Substantial improvement in room temperature strength can be achieved
by substructure strengthening, This strengthening is 5 to 6 times more potent

than is dispersion strengthening. (Discussion is on pp 42-46, 103-109, 118-120,)

Item 2,
At 1093°C, the yield strength and creep strength of dispersion
strengthened Ni alloys increase linearly with the grain aspect ratio, L/Z,

where L = grain length and £ = grain width. (Discussion is on pp 49-59, 67, 120-126.)
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